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Comprehensive analysis and modeling of rainfall distribution is essential in 
capturing the characteristics of high intense rainfall. The western region of 
Peninsular Malaysia which is more urbanized and densely populated is prone 
to flash flood occurrences due to the high intense rainfall brought by a 
convective rainfall during the inter-monsoon season. Convective rain is 
usually short live and intense. Therefore, knowledge pertaining to the 
distribution of rainfall intensity at short time scale is crucial in planning and 
decision making prior to, during and after a flood event, thereby minimizing 
the potentially catastrophic impact of flooding. The selection of appropriate 
probability distribution to represent rainfall intensity is highly critical to get 
a better indication of seasonal contribution to the annual rainfall. This study 
aimed to determine the better distribution of rainfall intensity to represent 
extreme rainfall events in the western region using Advanced Weather 
Generator (AWE-GEN). Model development consists of using hourly rainfall 
data and other meteorological data from three stations located within the 
studied region. Two probability distributions incorporated in the AWE-GEN 
model, namely, Weibull and Gamma were fitted to the historical data. 
Numerical evaluation using Root Mean Square Error goodness-of-fit test was 
used to compare the performance of the distributions. Results showed that 
AWE-GEN model is capable of simulating the monthly rainfall series at the 
west coast region with Weibull being the better distribution representing 
intensity. It was found that high values in model parameters 𝛼, 𝜃 and  𝜂 
contribute to the higher intense rainfall within the studied region. The AWE-
GEN model also performs quite well in reproducing the hourly and 24 hour 
extremes rainfall as well as generating the extreme wet spell; however the 
model slightly underestimates the extreme dry spell. Results can be 
beneficial, particularly, for a better rainfall forecasting at watersheds and 
urban areas. 
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1. Introduction 

*Precipitation is one of the most important 
meteorological variables for hydrological modeling. 
In cases long series of observed precipitation is not 
available; they can be stochastically generated by 
weather generators. Weather generators are 
traditionally used to stochastically generate long 
synthetic series of data, fill in missing data, and 
produce different realizations of the same data 
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(Wilby et al., 1998). It employs random numbers and 
takes the observed time series of a station as input. 
Besides able to simulate many realizations which 
provide a wider range of feasible situations (Ababaei 
et al., 2010), it can also provide the means to extend 
the simulation of weather to locations where 
observed weather data is not available. This can be 
achieved by interpolating the parameters of a 
weather generator between sites using an 
interpolation technique such as kriging or thin-plate 
smoothing splines (Semenov et al., 1998). Weather 
generators are basically based on first-order 
Markov-Chain associated with transition 
probabilities for simulating precipitation occurrence 
and a gamma distribution for the precipitation 
amounts (Fowler et al., 2007). It is also known as 
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stochastic rainfall models in which their parameters 
have its own probability distributions. The 
parameters of the stochastic models are estimated 
from statistical analysis of time series and can be 
changed in accordance with climate model 
simulation results. These models are capable of 
capturing the storm structure at the hourly time 
scale and downscaled to finer scales. The models are 
based on delta-change methods which are 
identification of properties or variables that are 
assumed to be scale invariant from the regional 
climate model scale to the urban catchment scale 
(Willems et al., 2012). There are many types of 
weather generators have been used since the 19th 
century with most of the studies used daily scale of 
meteorological data as inputs (Dubrovský, 1997; 
Schnur and Lettenmaier, 1998; Wilby et al., 1998; 
Wilks and Wilby, 1999; Brissette et al., 2007; Kim et 
al., 2007; Mareuil et al., 2007; Manning et al., 2009; 
Wilks, 2010; Kim et al., 2011; Min et al., 2011; Tseng 
et al., 2012; Khazaei et al., 2012; Chun et al., 2013; 
Kuchar et al., 2014; Parey et al., 2014). 

Long Ashton Research Station-Weather 
Generator (LARS-WG) was able to simulate daily 
precipitation. Means of yearly maxima and return 
values of daily synthetic precipitation were within 
the 95% confidence intervals of observed data for 
the study region (Semenov, 2008). LARS-WG had 
also been used to simulate the site-specific daily 
weather data required by crop growth simulation 
models. This method allows changes to a wider set of 
climate parameters in the scenario (Barrow and 
Semenov, 1995). Other studies have proved that 
LARS-WG was able to capture the weather statistics 
including the extremes at most of the temperate 
regions such as Europe, USA, Canada, New Zealand 
and Australia (Semenov and Barrow, 1997; Hashmi 
et al., 2009; Hashmi et al., 2011). In dealing with 
extreme events, weather generators that incorporate 
Neyman Scott Rectangular Pulses (NSRP) model is 
the most comprehensive for hourly (finer) data 
(Sunyer et al., 2012). Besides LARS-WG, the multi-
site statistical downscaling model (MSDM) has also 
been proposed in downscaling daily precipitation 
series at multiple sites in a regional study area by 
utilizing General Circulation Model (GCM) 
precipitation outputs as inputs. The MSDM was 
proved to be able to reproduce the observed 
precipitation occurrence lag-1 autocorrelation, the 
standard deviation of the wet-day precipitation 
amounts, maximum 3-day precipitation total, and 
90th percentile of the rain day amount. It was also 
accurately reproduced cross-site correlations of 
precipitation occurrence and as well as precipitation 
amount among multiple observation series in 
Quebec, Canada (Jeong et al., 2013). A recent study 
by Mehan et al. (2017) compared CLImate 
GENerator (CLIGEN), Long Ashton Research Station 
Weather Generator (LARS-WG), and Weather 
Generators (WeaGETS) models regarding their 
ability to capture the statistical properties of 
observed data. CLIGEN model was likely to 
overestimate values at the extremes, but both 

CLIGEN and LARS-WG are well performed in terms 
of capturing the statistical properties of observed 
precipitation and temperatures. On the other hand, 
an improvement is needed for WeaGETS model in 
order to get the better simulations of its parameters. 

In Malaysia, the performances of Statistical 
Downscaling Model (SDSM) and LARS-WG have been 
compared in terms of generating possible future 
values of local meteorological variables. It was found 
that SDSM yields a better performance compared to 
LARS-WG, except SDSM is slightly underestimated 
for the wet spell lengths (Hassan et al., 2014). 
Advanced Weather Generator (AWE-GEN) model 
developed by Fatichi et al. (2011) has shown great 
skill in simulation and projections of extreme rainfall 
events for Peninsular Malaysia (Syafrina et al., 2015). 
In AWE-GEN model, Gamma distribution is fitted to 
the intensity of rainfall. However, past studies have 
been conducted in Peninsular Malaysia. Several 
types of distributions have been tested for rainfall 
intensity and the results varied according to the 
models being used. For instance, Generalized Pareto 
has been found to be the best distribution of rainfall 
intensity in Peninsular Malaysia (Dan’azumi et al., 
2010) to model the rainfall intensity. Another study 
found that Mixed Lognormal distribution was the 
best distribution model for most of the rain gauge 
stations in Peninsular Malaysia (Suhaila et al., 2011). 
However, studies by Abas et al. (2014) and Daud et 
al. (2016) using Neyman Scott methodology showed 
that Mixed Exponential was the best distribution to 
describe the intensity of rainfall in Peninsular 
Malaysia.  

The surface climate of Peninsular Malaysia is 
influenced by the northeast monsoon season 
between November and February and by southwest 
monsoon season between May and August. The 
North East monsoon season is usually associated 
with heavier rainfall with the eastern and southern 
regions being the most affected areas. In between 
these two monsoons are the inter-monsoon seasons 
occurring in March–April (MA) and September–
October (SO), which brings intense convective 
rainfall to the western part of Peninsular Malaysia. 
Rainfall intensity is defined as the ratio of the total 
amount of rain (rainfall depth) falling during a given 
period to the duration of the period. It is expressed 
mm per hour (mm/h), depth units per unit time. The 
statistical characteristics of high intensity, short 
duration, and convective rainfall are essentially 
independent of locations within a region. Western 
coast recorded higher value of extreme intensities 
and extreme cumulative indices during inter-
monsoon (March and April) season which resulted in 
an increase in flash flood occurrence during this 
period (Syafrina et al., 2015). Therefore, knowledge 
of the distribution of rainfall intensity is crucial in 
planning and decision making prior to, during and 
after a flood event – thereby minimizing the 
potentially catastrophic impact of flooding. 

Accordingly, this study aims to develop to 
determine the better probability distribution of 
rainfall intensity that represent extreme rainfall 



Syafrina et al/International Journal of Advanced and Applied Sciences, 5(1) 2018, Pages: 101-108 

103 
 

events for stations located on the western coast 
region of Peninsular Malaysia. A stochastic rainfall 
model will be presented for the generation of hourly 
rainfall data at three selected rainfall stations. AWE-
GEN model which integrates the Neyman-Scott 
process employs a reasonable number of parameters 
to represent the physical attributes of rainfall. With 
respect to rainfall intensity, this study proposes the 
use of a Weibull distribution. The performance of the 
proposed model will be compared to a model that 
employs the Gamma distribution. Historical hourly 
rainfall data of 31 years (1975-2005) is used as input 
to construct the models, and simulations of hourly 
series by both models are performed at an 
independent site. The performance of the models is 
assessed based on how closely the statistical 
characteristics of the simulated series resembled the 
statistics of the observed series. Root Mean Square 
Error (RMSE) value is then estimated for both sets of 
simulations at each rainfall station and compared. 
The Lowest value of RMSE indicates better 
distribution at a particular station. 

2. Data  

The studied region which is located on the 
western part of the peninsular is the most 
progressive and densely populated region in 
Malaysia. The region is subjected to many flash flood 
incidences which partly due to land use changes and 
progress. In this study, the AWE-GEN model is 
constructed based on 30 years of historical data 
(1975-2005). The input data required by AWE-GEN 
are hourly rainfall, hourly temperature, hourly 
relative humidity and hourly wind speed. Hourly 
rainfall data were sourced from the Malaysia 
Drainage and Irrigation Department (DID) while 
other meteorological data were sourced from 
Malaysian Meteorological Department (MMD). In 
this study, three rainfall stations represents the west 
coast were selected. Fig. 1 shows the location of the 
rainfall stations whereas Table 1 lists the selected 
stations used in this study. 

3. Model development  

In AWE-GEN model, the proposed Gamma 
distribution is fitted to the intensity of rainfall. In 
AWE-GEN, the intra-annual variability of rainfall is 
captured by the Neyman-Scott Rectangular Pulses 
(NSRP) model. Work by Abas et al. (2014) and 
Norzaida et al. (2016) indicated that the NSRP model 
is suitable to be used in Malaysia. The Gamma 
distribution that is associated in NSRP is as follows, 
 

𝑃(𝑥) = {
1

Γ(𝛼)𝜃𝛼 𝑥𝛼−1𝑒
(

−𝑥

𝜃
)
   , 𝑥 > 0

0                               , 𝑥 ≤ 0
  

 

where 𝜃 is the scale parameter (𝜃 > 0), 𝛼 is the 
shape parameter(𝛼 > 0) and 𝑥 is the hourly rainfall 
amount. Gamma distribution will then be replaced 
by the Weibull distribution and will be fitted to 

rainfall intensity. The Weibull distribution is as 
follows, 

 

𝑃(𝑥) = (
𝛽

𝛼
) (

𝑥

𝛼
)

𝛽−1
𝑒𝑥𝑝

(−(
𝑥

𝛼
)

𝛽
)
  

 
where 𝛼 and 𝛽 are the scale and shape parameters, 
respectively. Table 2 gives the definition of each 
rainfall parameter with Gamma representing rainfall 
intensity. 

 

 
Fig. 1: Map of peninsular Malaysia with location of rainfall 

stations 
 

Table 1: Stations with latitude (lat) and longitude (lon) 
Station 

ID 
Station Name 

Lat 
(o) 

Lon (o) 

3117070 JPS Ampang 3.16 101.75 

3516022 
Loji Air Kuala Kubu Bharu 

Selangor 
3.57 101.65 

3118102 Sek. Keb. Kg. Lui Selangor 3.15 101.91 

 
For validation model, the simulated hourly 

rainfall was divided into two non‐overlapping 
periods of i) 1975 to 1989 and ii) 1990 to 2005. 
1975 to 1989 was used as the reference period 
where the multiplicative factor is calculated based 
on the simulation output and the high resolution 
observational data. The changing factors were then 
used to correct the biases of the simulation output 
from 1990 to 2005. The corrected hourly rainfall is 
then compared to the observation from the identical 
period of 1985‐1999. To compare the performance 
of both distribution, Root Mean Square Error 

(RMSE), RMSE = √1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

𝑛
𝑖=1

2
 where 𝑛 the total 

number of data is, 𝑦𝑖  is the ith actual rainfall amount 
and 𝑦̂𝑖  is the simulated rainfall amount; value is 
estimated for both sets of simulations. The lowest 
value of RMSE indicates the better distribution at a 
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particular station. Next, each rainfall station will use 
the better distribution to simulate extremes rainfall 

as well as dry/wet spell lengths. 

 
Table 2: Rainfall parameters of the NSRP model 

Parameter Explanation 
𝜆 Mean storm origin arrivals (h) 
𝛽 Mean waiting time for cell origins after the origin of the storm (h) 
𝜂 Mean duration of the cell (h) 
𝜇𝑐 Mean number of cell per storm [-] 
𝛼 Shape parameter of the Gamma distribution of rainfall intensity [-] 
𝜃 Scale parameter of the Gamma distribution of rainfall intensity (mm h-1) 

 

4. Results and discussions  

Table 3 shows the RMSE values for both 
distributions at each rainfall station. There is not 
much difference in the values between Gamma and 
Weibull, but overall, Weibull is the best fit for rainfall 
intensity. The simulated statistical properties of 
rainfall are compared with observations at the 
monthly scale as shown in Fig. 2. Overall, the 
statistical properties are well-preserved at the 
periods of aggregation of 1 hour. The mean and 
variance are well simulated. Despite an 
underestimation of the lag-1 autocorrelation and 
skewness, both statistics show a consistent pattern 
between observed and simulated time series at all 

stations. Also seen in the figure, it is quite 
challenging for the weather generator to simulate 
the remaining statistics, where the frequency of non-
precipitation is slightly overestimated while in 
contrast, the transition probability wet-wet is 
slightly underestimated at all stations. 

 
Table 3: RMSE values of hourly rainfall for Gamma and 
Weibull distributions at each rainfall station (bold fonts 

indicate lowest RMSE value) 
Station ID RMSE of Gamma RMSE of Weibull 
3117070 298 294.2 
3118102 252 259.3 
3516022 255.2 251.8 
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(ii) 3516022 
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(iii) 3118102 

Fig. 2: A comparison between observed (red) and simulated (green) monthly statistics of rainfall (mean, variance, lag-1 
autocorrelation, skewness, frequency of non-precipitation, transition probability wet-wet), for the aggregation period of 1 

hour 
 

Table 4 shows the estimated rainfall parameters 
of the AWE-GEN model for every station. According 
to Arritt and Daniel (2014), rainfall intensity is 
pointed out by two parameters α and θ and the mean 
of rainfall intensity can be written as αθ. From the 
table, the highest mean of rainfall intensity for all 
stations is in April which corresponds to the inter-
monsoon period. There is a high chance of 
convective rainfall on the west coast during this 
season that may lead to high intense rainfall over a 
short interval of time. The parameter estimates for 𝜆 
and 𝛽 indicates the estimated storm origin arrival 
rate and waiting time for cell origin after the storm 
origin, respectively.  

There are no significant differences in 𝜆 and 𝛽 at 
all stations. Even though the parameter estimated 
for the mean number of cell per storm, 𝜇𝑐 , for station 
3117070 recorded lowest value in April (≈ 1), the 
mean duration of cell, 𝜂, has the highest value in 
April compared to other months. Similarly, for 
station 3516022, 𝜇𝑐 is higher in December followed 
by April with a mean of ≈4 and ≈3 rain cells per 
storm, respectively. However, 𝜂 recorded the highest 
value in April. Meanwhile for station 3118102, 𝜂 
recorded highest value in April in spite of having 
lowest value of 𝜇𝑐 in April. This is also can be seen in 
Fig. 3 where 𝜇𝑐 is found higher in November while 𝜂 
is found higher in April. 

 
Table 4: Estimated rainfall parameters of the AWE-GEN model 

 
Par/Mon Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

3117070 𝛼 6.5 6.6 15.9 20 4.7 2 3.5 4.4 2 1.8 1.6 1.9 

 
𝜃 5.1 4.1 2.6 6.3 5.8 13.3 6.8 5.8 11.1 14.2 10.8 9.7 

 
𝛼𝜃 33.3 26.9 41.5 125.3 27.4 26.9 24 25.5 21.8 25.6 16.9 18.2 

 
𝛽 0.01 0.014 0.03 0.01 0.018 0.012 0.013 0.01 0.01 0.01 0.011 0.072 

 
𝜂 3.652 2.595 3.068 8.369 2.207 3.055 2.578 2.457 3.126 3.234 2.751 2.202 

 
𝜇𝑐 1.791 2.461 1.279 1.037 1.685 2.77 2.072 1.567 2.899 2.401 2.673 1.956 

 
𝜆 0.01 0.011 0.017 0.025 0.014 0.008 0.011 0.014 0.014 0.019 0.025 0.017 

3516022 𝛼 1.1 1.7 6.1 2.6 2.7 2.2 1.1 4.2 1.6 5.7 4.6 1.2 

 
𝜃 8.3 8.6 3.2 7.5 5.8 7.6 12 5.1 9.9 2.9 4.3 7.1 

 
𝛼𝜃 9 14.9 19.2 19.3 15.6 16.8 13.6 21.7 16.3 16.7 19.9 8.2 

 
𝛽 0.044 0.0372 0.0173 0.012 0.01 0.01 0.01 0.01 0.01 0.023 0.046 0.016 

 
𝜂 1.692 1.987 1.905 2.506 1.424 1.89 2.154 2.288 2.09 1.979 2.156 1.515 

 
𝜇𝑐 3.353 2.508 1.936 2.572 1.39 2.172 2.945 2.007 2.147 1.98 1.736 4.192 

 
𝜆 0.007 0.01 0.012 0.018 0.021 0.013 0.012 0.013 0.02 0.021 0.025 0.01 

3118102 𝛼 3.6 2.7 2.4 8.1 3.6 1.9 2.3 2.5 0.7 1.1 1.2 0.4 

 
𝜃 5.9 8 12.5 5.9 7.5 8.1 9.3 8.3 23.6 16.3 13 13.1 

 
𝛼𝜃 21.4 22.1 29.5 47.8 26.9 15.8 21.4 20.6 17.6 18.5 15 5.8 

 
𝛽 0.028 0.013 0.01 0.015 0.01 0.01 0.01 0.011 0.01 0.01 0.011 0.016 

 
𝜂 2.586 2.565 3.362 3.778 3.105 1.726 3.04 2.427 2.809 2.821 2.82 2.085 

 
𝜇𝑐 1.719 2.769 2.671 1.445 2.393 2.122 2.345 2.436 3.405 3.096 4.099 10.352 

 
𝜆 0.007 0.008 0.01 0.014 0.013 0.008 0.012 0.01 0.012 0.015 0.016 0.007 

 

A comparison between observed and simulated 
monthly rainfall for every station is shown in Fig. 4. 
The simulated process perfectly preserves the 
monthly mean and variance of observed rainfall. As 
shown in the figure, the highest mean rainfall 
received by all stations is during November. 
However, the mean rainfall amount starts to decline 
in December until February. This corresponds to the 
northeast monsoon season which usually begins in 

early November and ends in February. In contrast, 
the mean rainfall amount seems to increase in March 
and April. It is interesting to note that March and 
April correspond to the inter-monsoon season where 
the western region is at high risk of flash floods 
during this period which consistent with Syafrina et 
al. (2015). 
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(i) 𝜇𝑐 

 
(ii) 𝜂 

Fig. 3: Comparison between (i) 𝜇𝑐 and 𝜂 

 
Another significant finding is that the mean 

rainfall received in May to August is lesser compared 
to the other months. This is also in line with findings 
in Syafrina et al. (2015) where the west coast region 
is quite dry during the southwest monsoon season 
(i.e., May to August). The simulated and observed 
hourly and 24 hour extremes rainfall are shown in 
Fig. 5. Both extremes are well simulated up to the 
40-return period. Similarly, the extreme wet spell is 
well simulated for all stations. On the other hand, the 
extreme dry spell is slightly underestimated for all 
stations.  

 

 
(i) 3117070 

 
(ii) 3516022 

 
(iii) 3118102 

Fig. 4: A comparison between observed (red) and 
simulated (green) monthly rainfall 
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(ii) 3516022 

 
(iii) 3118102 

Fig. 5: A comparison between values of extreme precipitation at (a) 1 and (b) 24 hours aggregation periods; (c) extremes of 
dry and (d) wet spell durations 

 

5. Conclusion 

Overall, the AWE-GEN model is capable of 
simulating the monthly rainfall at the west coast 
region of Peninsular Malaysia. Results revealed that 
Weibull is the better distribution in representing the 
rainfall intensity compared to Gamma distribution 
over the west coast region. The results have shown 
that there are no significant differences in 𝜆 and 𝛽 at 
all stations. Higher values in 𝛼, 𝜃 and  𝜂 contribute 
to higher intensity of rainfall while 𝜇𝑐 gives less 
contribution to the intensity of rainfall in the west 
coast region. In addition to that, the AWE-GEN model 
is also able to capture the extreme properties. This 
model is performing quite well in reproducing the 
hourly and 24 hour extremes rainfall for all stations 
as well as generating the extreme wet spell. 
However, the AWE-GEN model marginally 
underestimates the extreme dry spell. Results can be 
beneficial, particularly, for a better rainfall 

forecasting at watersheds and urban areas and 
managing storm water management systems.   
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